Anomalous-plasmoid-ejection-induced secondary magnetic reconnection: modeling solar flares and coronal mass ejections by laser–plasma experiments
نویسندگان
چکیده
The driving mechanism of solar flares and coronal mass ejections is a topic of ongoing debate, apart from the consensus that magnetic reconnection plays a key role during the impulsive process. While present solar research mostly depends on observations and theoretical models, laboratory experiments based on high-energy density facilities provide the third method for quantitatively comparing astrophysical observations and models with data achieved in experimental settings. In this article, we show laboratory modeling of solar flares and coronal mass ejections by constructing the magnetic reconnection system with two mutually approaching laser-produced plasmas circumfused of self-generated megagauss magnetic fields. Due to the Euler similarity between the laboratory and solar plasma systems, the present experiments demonstrate the morphological reproduction of flares and coronal mass ejections in solar observations in a scaled sense, and confirm the theory and model predictions about the current-sheet-born anomalous plasmoid as the initial stage of coronal mass ejections, and the behavior of moving-away plasmoid stretching the primary reconnected field lines into a secondary current sheet conjoined with two bright ridges identified as solar flares.
منابع مشابه
Plasmoid-Induced-Reconnection and Fractal Reconnection
As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-inducedreconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the cla...
متن کاملThe Role of Magnetic Reconnection in Solar Activity
We argue that magnetic reconnection plays the determining role in many of the various manifestations of solar activity. In particular, it is the trigger mechanism for the most energetic of solar events, coronal mass ejections and eruptive flares. We propose that in order to obtain explosive eruptions, magnetic reconnection in the corona must have an “on-off” nature, and show that reconnection i...
متن کاملCommission 10: Solar Activity
Commission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar ...
متن کاملA Model for Spontaneous Onset of Fast Magnetic Reconnection
We present a model for the spontaneous onset of fast magnetic reconnection in a weakly collisional plasma, such as the solar corona. When a current layer of macroscopic width undergoes collisional (Sweet-Parker) reconnection, a narrow dissipation region forms around the X-line. This dissipation region naturally becomes narrower during the reconnection process as stronger magnetic fields are con...
متن کاملExploring the Role of Magnetic Reconnection in Solar Eruptive Events
We summarize our recent progress in investigating the role of magnetic reconnection in solar eruptive events consisting of flares, Coronal Mass Ejections (CMEs), and/or Magnetic Clouds (MCs). The rate and total flux of magnetic reconnection in low-corona are inferred from flare observations and compared with kinematic properties and magnetic flux budget of erupting flux ropes. The results and t...
متن کامل